dB Per Octave Calculator

Calculate dB Per Octave







Formula

The formula to calculate the dB per octave is:

\[ \text{dB/Octave} = \frac{\text{End Level} - \text{Start Level}}{\log_2\left(\frac{\text{End Frequency}}{\text{Start Frequency}}\right)} \]

Where:

Definition

Example

Let's say the start frequency is 100 Hz, the end frequency is 800 Hz, the start level is 50 dB, and the end level is 30 dB. Using the formula:

\[ \text{dB/Octave} = \frac{30 - 50}{\log_2\left(\frac{800}{100}\right)} \]

We get:

\[ \text{dB/Octave} = \frac{-20}{3} = -6.67 \]

So, the dB per octave is -6.67.

Extended information about "dB-Per-Octave-Calculator"

dB per Octave

Definition: dB per octave is a measure of how much a signal's power decreases as the frequency doubles.

Formula: \( \text{dB per octave} = 10 \log_{10} \left( \frac{P_2}{P_1} \right) \)

Example: \( \text{dB per octave} = 10 \log_{10} \left( \frac{50}{100} \right) \)

dB per Decade to dB per Octave

Formula: \( \text{dB per octave} = \frac{\text{dB per decade}}{3.32} \)

Example: \( \text{dB per octave} = \frac{20}{3.32} \)

6 dB per Octave

Definition: A slope of 6 dB per octave indicates that the signal's power decreases by 6 dB each time the frequency doubles.

3 dB per Octave

Definition: A slope of 3 dB per octave indicates that the signal's power decreases by 3 dB each time the frequency doubles.

Frequency to Octave Calculator

Formula: \( \text{Octaves} = \log_{2} \left( \frac{f_2}{f_1} \right) \)

Octave Band Frequency Calculator

Formula: \( f_c = f_1 \times 2^{\frac{n}{b}} \)

Example: \( f_c = 1000 \times 2^{\frac{1}{3}} \)

1 Octave per Minute

Definition: 1 octave per minute indicates that the frequency doubles every minute.