To calculate the Outside Diameter (OD):
\[ OD = \sqrt{\left(\frac{L \cdot t}{\pi} + \frac{ID^2}{4}\right)} \times 2 \]
Where:
Roll diameter is a measure of the diameter of the circle created when a material of a certain thickness is rolled into a cylindrical shape. The thicker and longer the material, the greater the roll diameter will be.
Let's assume the following values:
Using the formula:
\[ OD = \sqrt{\left(\frac{100 \cdot 0.1}{\pi} + \frac{2^2}{4}\right)} \times 2 = \sqrt{\left(\frac{10}{3.1416} + 1\right)} \times 2 \approx \sqrt{4.183} \times 2 \approx 4.09 \text{ inches} \]
The Outside Diameter is approximately 4.09 inches.
Let's assume the following values:
Using the formula:
\[ OD = \sqrt{\left(\frac{200 \cdot 0.2}{\pi} + \frac{3^2}{4}\right)} \times 2 = \sqrt{\left(\frac{40}{3.1416} + 2.25\right)} \times 2 \approx \sqrt{14.99} \times 2 \approx 7.75 \text{ inches} \]
The Outside Diameter is approximately 7.75 inches.