The formulas used in the calculations are:
\[ \text{profit} = \text{revenue} - \text{costs} \]
\[ \text{gross margin} = 100 \times \frac{\text{profit}}{\text{revenue}} \]
\[ \text{net price} = \frac{\text{gross price}}{1 + \text{tax rate}} \]
\[ \text{markup} = 100 \times \frac{\text{margin}}{1 - \text{margin}} \]
To calculate revenue from profit and margin:
\[ \text{revenue} = 100 \times \frac{\text{profit}}{\text{margin}} \]
To calculate costs from revenue and margin:
\[ \text{costs} = \text{revenue} - \frac{\text{margin} \times \text{revenue}}{100} \]
This calculator computes the gross margin percentage, net price, and markup based on the input values of revenue, costs, gross price, tax rate, and margin.
Let's assume the following:
Calculate the profit:
\[ \text{profit} = 10,000 - 7,000 = 3,000 \]
Calculate the gross margin percentage:
\[ \text{gross margin} = 100 \times \frac{3,000}{10,000} = 30\% \]
Calculate the net price:
\[ \text{net price} = \frac{200}{1 + 0.05} = 190.48 \]
Calculate the markup:
\[ \text{markup} = 100 \times \frac{0.20}{1 - 0.20} = 25\% \]
Therefore, the gross margin percentage is 30%, the net price is $190.48, and the markup is 25%.