The formula to calculate the Velocity (V) is:
\[ V = \sqrt{\frac{2 \cdot eV \cdot 1.602 \times 10^{-19}}{m}} \]
Where:
Let's say the electron volts (\( eV \)) is 10 eV and the mass (\( m \)) is 9.11e-31 kg (mass of an electron). Using the formula:
\[ V = \sqrt{\frac{2 \cdot 10 \cdot 1.602 \times 10^{-19}}{9.11 \times 10^{-31}}} \]
We get:
\[ V ≈ 1.87 \times 10^6 \text{ m/s} \]
So, the Velocity (\( V \)) is approximately 1.87 million meters per second.
Velocity is the speed of an object in a specific direction. In this context, it refers to the speed of a particle given its energy in electron volts and its mass.
Formula: \( v = \sqrt{\frac{2eV}{m}} \)
Example: \( v = \sqrt{\frac{2 \times 1.602 \times 10^{-19} \times 100}{9.109 \times 10^{-31}}} \)
Formula: \( 1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} \)
Example: \( 5 \text{ eV} = 5 \times 1.602 \times 10^{-19} \text{ J} \)
Formula: \( v = \sqrt{\frac{2eV}{m}} \)
Example: \( v = \sqrt{\frac{2 \times 1.602 \times 10^{-19} \times 50}{9.109 \times 10^{-31}}} \)
Formula: \( v_{\text{avg}} = \frac{v_1 + v_2}{2} \)
Example: \( v_{\text{avg}} = \frac{2 \times 10^6 + 3 \times 10^6}{2} \)