The formula to calculate the time (T) from degrees (D) is:
\[ T = D \times 4 \]
Where:
Let's say the degree is 45°. Using the formula:
\[ T = 45 \times 4 \]
We get:
\[ T = 180 \]
So, the time (\( T \)) is 180 minutes.
Degree to Time is a method of converting degrees, which are units of measurement for angles, into time. This is often used in astronomy where the celestial sphere is divided into 360 degrees, with each degree representing four minutes of time. Therefore, by knowing the degree of a celestial object, one can determine its position in time.
Formula: \( \text{Degrees} = \text{Time} \times 15 \)
Example: \( \text{Degrees} = 2 \times 15 \)
Formula: \( \text{Hours} = \frac{\text{Degrees}}{15} \)
Example: \( \text{Hours} = \frac{45}{15} \)
Formula: \( \text{Degrees} = \frac{\text{Minutes}}{60} \times 15 \)
Example: \( \text{Degrees} = \frac{30}{60} \times 15 \)
Formula: \( \text{DMS} = \text{Degrees} + \left( \frac{\text{Minutes}}{60} \right) + \left( \frac{\text{Seconds}}{3600} \right) \)
Example: \( \text{DMS} = 30 + \left( \frac{15}{60} \right) + \left( \frac{45}{3600} \right) \)
Formula: \( \text{Length} = \text{Radius} \times \theta \)
Example: \( \text{Length} = 10 \times \frac{\pi}{6} \)