The formula to calculate the Current Constant Dollars (C) is:
\[ C = P \times \left( \frac{I_c}{I_p} \right) \]
Where:
Let's say the amount in past dollars (P) is $1,000, the current price index (I_c) is 120, and the past price index (I_p) is 100. Using the formula:
\[ C = 1000 \times \left( \frac{120}{100} \right) \]
We get:
\[ C = 1000 \times 1.2 = 1200 \text{ dollars} \]
So, the current constant dollars are $1,200.
Formula: \( \text{Constant Dollars} = \frac{\text{Current Dollars}}{1 + \text{Inflation Rate}} \)
Example: \( \text{Constant Dollars} = \frac{1000}{1 + 0.03} \)
Formula: \( \text{Constant Dollars} = \frac{\text{Current Dollars}}{1 + \text{Inflation Rate}} \)
Example: \( \text{Constant Dollars} = \frac{1500}{1 + 0.04} \)
Formula: \( \text{Constant Currency} = \frac{\text{Current Currency}}{1 + \text{Inflation Rate}} \)
Example: \( \text{Constant Currency} = \frac{2000}{1 + 0.05} \)
Formula: \( \text{Constant Dollars} = \frac{\text{Actual Dollars}}{1 + \text{Inflation Rate}} \)
Example: \( \text{Constant Dollars} = \frac{1200}{1 + 0.02} \)
Formula: \( \text{Constant Dollars} = \frac{\text{Then Year Dollars}}{1 + \text{Inflation Rate}} \)
Example: \( \text{Constant Dollars} = \frac{1800}{1 + 0.06} \)
Formula: \( \text{Current Dollar Value} = \text{Constant Dollar Value} \times (1 + \text{Inflation Rate}) \)
Example: \( \text{Current Dollar Value} = 1000 \times (1 + 0.03) \)
Formula: \( \text{Constant} = \frac{\text{Value}}{\text{Reference Value}} \)
Example: \( \text{Constant} = \frac{500}{100} \)