The formula to calculate the Capacitor Ripple Voltage (Vr) is:
\[ Vr = \frac{I}{2 \pi f C} \]
Where:
Let's say the ripple current (I) is 2 A, the frequency (f) is 60 Hz, and the capacitance (C) is 0.01 F. Using the formula:
\[ Vr = \frac{2}{2 \pi \times 60 \times 0.01} \approx 0.53 \]
So, the Ripple Voltage (Vr) is approximately 0.53 V.
Definition: This calculator estimates the voltage ripple across a capacitor.
Formula: \( V_{ripple} = \frac{I_{load}}{f \times C} \)
Example: \( V_{ripple} = \frac{1}{50 \times 100 \times 10^{-6}} \)
Definition: This formula calculates the ripple voltage in a capacitor.
Formula: \( V_{ripple} = \frac{I_{load}}{f \times C} \)
Example: \( V_{ripple} = \frac{2}{60 \times 200 \times 10^{-6}} \)
Definition: This calculator estimates the ripple current in a capacitor.
Formula: \( I_{ripple} = \frac{V_{ripple}}{X_C} \)
Example: \( I_{ripple} = \frac{0.5}{10} \)
Definition: This calculator estimates the ripple current in a DC link capacitor.
Formula: \( I_{ripple} = \frac{V_{ripple}}{X_C} \)
Example: \( I_{ripple} = \frac{1}{5} \)
Definition: This formula calculates the ripple voltage in a capacitor.
Formula: \( V_{ripple} = \frac{I_{load}}{f \times C} \)
Example: \( V_{ripple} = \frac{3}{100 \times 300 \times 10^{-6}} \)
Definition: This formula calculates the output ripple voltage in a capacitor filter.
Formula: \( V_{ripple} = \frac{I_{load}}{f \times C} \)
Example: \( V_{ripple} = \frac{4}{120 \times 400 \times 10^{-6}} \)