The formula to calculate the Audit Percentage (P) is:
\[ P = \left(\frac{A}{T}\right) \times 100 \]
Where:
Let's say the audit amount (A) is $5,000 and the total amount (T) is $50,000. Using the formula:
\[ P = \left(\frac{5,000}{50,000}\right) \times 100 = 10 \% \]
So, the audit percentage is 10%.
Definition: Calculating percentage in accounting involves determining the proportion of a part to the whole.
Formula: \( \text{Percentage} = \left( \frac{\text{Part}}{\text{Whole}} \right) \times 100 \)
Example: \( \text{Percentage} = \left( \frac{50}{200} \right) \times 100 \)
Definition: This calculator estimates the percentage of an audiobook that has been completed.
Formula: \( \text{Percent Complete} = \left( \frac{\text{Time Listened}}{\text{Total Time}} \right) \times 100 \)
Example: \( \text{Percent Complete} = \left( \frac{3}{10} \right) \times 100 \)
Definition: This calculator finds the average of a set of percentages.
Formula: \( \text{Average Percentage} = \frac{\sum \text{Percentages}}{n} \)
Example: \( \text{Average Percentage} = \frac{(20 + 30 + 50)}{3} \)
Definition: This calculator estimates the sample size needed for an audit based on the population size and confidence level.
Formula: \( \text{Sample Size} = \frac{N \times Z^2 \times p \times (1-p)}{E^2 \times (N-1) + Z^2 \times p \times (1-p)} \)
Example: \( \text{Sample Size} = \frac{1000 \times 1.96^2 \times 0.5 \times (1-0.5)}{0.05^2 \times (1000-1) + 1.96^2 \times 0.5 \times (1-0.5)} \)