The formula to calculate the inventory sample size is:
\[ n = \frac{{Z^2 \cdot p \cdot (1-p)}}{{e^2}} \cdot \frac{{1}}{{1 + \left(\frac{{n - 1}}{{N}}\right)}} \]
Where:
Inventory sample size is the number of items from a larger population of inventory that should be audited to estimate the characteristics of the whole inventory with a certain level of confidence. It is a crucial concept in inventory management, quality control, and statistical sampling.
Let's assume the following values:
Using the formula:
\[ n = \frac{{1.96^2 \cdot 0.5 \cdot (1-0.5)}}{{0.05^2}} \cdot \frac{{1}}{{1 + \left(\frac{{n - 1}}{{1000}}\right)}} = \frac{{3.8416 \cdot 0.25}}{{0.0025}} \cdot \frac{{1}}{{1 + \left(\frac{{n - 1}}{{1000}}\right)}} = 384.16 \cdot \frac{{1}}{{1 + \left(\frac{{384.16 - 1}}{{1000}}\right)}} = 278 \]
The Sample Size (n) is 278.