The formula to calculate the hoop pressure (P_h) is:
\[ P_h = \frac{P_i \times r_i}{t} \]
Where:
Let's say the internal pressure (P_i) is 500,000 Pa, the internal radius (r_i) is 0.5 m, and the wall thickness (t) is 0.05 m. Using the formula:
\[ P_h = \frac{500000 \times 0.5}{0.05} \]
We get:
\[ P_h = 5000000\, \text{Pa} \]
So, the hoop pressure is 5,000,000 Pascals.
Definition: Determines the hoop stress in a pipe based on internal pressure, radius, and wall thickness.
Formula: \( \sigma = \frac{P \times r}{t} \)
Example: \( \sigma = \frac{100 \times 0.5}{0.05} \)
Definition: Calculates the hoop stress in a pressure vessel.
Formula: \( \sigma = \frac{P \times D}{2 \times t} \)
Example: \( \sigma = \frac{150 \times 1}{2 \times 0.1} \)
Definition: Determines the hoop stress in a cylindrical shell.
Formula: \( \sigma = \frac{P \times r}{t} \)
Example: \( \sigma = \frac{200 \times 0.3}{0.02} \)
Definition: Calculates the hoop stress in a pipe based on internal pressure, radius, and wall thickness.
Formula: \( \sigma = \frac{P \times r}{t} \)
Example: \( \sigma = \frac{120 \times 0.4}{0.03} \)
Definition: Calculates the hoop stress in a thick-walled cylinder.
Formula: \( \sigma = \frac{P \times (r_o^2 + r_i^2)}{r_o^2 - r_i^2} \)
Example: \( \sigma = \frac{100 \times (0.5^2 + 0.3^2)}{0.5^2 - 0.3^2} \)