The formula to calculate the Helical Antenna Length (L) is:
\[ \text{L} = \frac{\text{C} \cdot \lambda}{4 \cdot \pi} \]
Where:
Let's say the circumference of the helix (C) is 1 meter and the wavelength of the signal (λ) is 0.5 meters. Using the formula:
\[ \text{L} = \frac{1 \cdot 0.5}{4 \cdot 3.14159} \approx 0.04 \, \text{meters} \]
So, the length of the helical antenna is approximately 0.04 meters.
Definition: Calculates the length of a vertical antenna based on the desired frequency.
Formula: \( L = \frac{300}{4 \times f} \)
Example: \( L = \frac{300}{4 \times 14} \)
Definition: Provides the formula to calculate the length of an antenna.
Formula: \( L = \frac{300}{2 \times f} \)
Example: \( L = \frac{300}{2 \times 7} \)
Definition: Calculates the dimensions of a helical antenna.
Formula: \( L = N \times \lambda \)
Example: \( L = 10 \times 0.3 \)
Definition: Calculates the radial length for a vertical antenna.
Formula: \( R = \frac{300}{4 \times f} \)
Example: \( R = \frac{300}{4 \times 14} \)
Definition: Calculates the length of a telescopic antenna based on the desired frequency.
Formula: \( L = \frac{300}{2 \times f} \)
Example: \( L = \frac{300}{2 \times 10} \)
Definition: Calculates the length of a radio antenna based on the desired frequency.
Formula: \( L = \frac{300}{2 \times f} \)
Example: \( L = \frac{300}{2 \times 15} \)
Definition: Calculates the length of an antenna based on the frequency.
Formula: \( L = \frac{300}{2 \times f} \)
Example: \( L = \frac{300}{2 \times 20} \)
Definition: Calculates the length of a VHF antenna based on the desired frequency.
Formula: \( L = \frac{300}{2 \times f} \)
Example: \( L = \frac{300}{2 \times 50} \)
Definition: Calculates the gain of a helical antenna.
Formula: \( G = 10 \log_{10} \left( \frac{4 \pi A}{\lambda^2} \right) \)
Example: \( G = 10 \log_{10} \left( \frac{4 \pi \times 0.5}{0.3^2} \right) \)