Group Rate Calculator

Calculate Group Rate (GR)



Formula

The formula to calculate the Group Rate (GR) is:

\[ GR = IR - \frac{IR \times D}{100} \]

Where:

What is Group Rate?

The Group Rate is the discounted rate offered to a group of individuals. It is calculated by applying a discount percentage to the individual rate. This metric is useful for businesses and organizations to offer special pricing for group bookings or purchases.

Example

Let's say the individual rate (IR) is $100, and the group rate discount (D) is 20%. Using the formula:

\[ GR = 100 - \frac{100 \times 20}{100} = 80 \]

So, the group rate (GR) is $80.

Extended information about " Group-Rate-Calculator "

Group Share Price Calculator

Definition: Calculates the average share price for a group of stocks.

Formula: \( \text{Average Price} = \frac{\sum \text{Share Prices}}{\text{Number of Shares}} \)

Example: \( \text{Average Price} = \frac{100 + 200 + 300}{3} \)

Calculator for Grouped Data

Definition: Calculates statistical measures for grouped data.

Formula: \( \text{Mean} = \frac{\sum (f \cdot x)}{\sum f} \)

Example: \( \text{Mean} = \frac{(2 \cdot 10) + (3 \cdot 20) + (5 \cdot 30)}{2 + 3 + 5} \)

Range of Grouped Data Calculator

Definition: Calculates the range for grouped data.

Formula: \( \text{Range} = \text{Upper Limit} - \text{Lower Limit} \)

Example: \( \text{Range} = 100 - 10 \)

Rates and Ratios Calculator

Definition: Calculates rates and ratios for given data.

Formula: \( \text{Rate} = \frac{\text{Quantity 1}}{\text{Quantity 2}} \)

Example: \( \text{Rate} = \frac{50}{10} \)

R Calculate Percentage by Group

Definition: Calculates the percentage of each group in R.

Formula: \( \text{Percentage} = \left( \frac{\text{Group Value}}{\text{Total Value}} \right) \times 100 \)

Example: \( \text{Percentage} = \left( \frac{20}{100} \right) \times 100 \)

Statistics Calculator for Grouped Data

Definition: Calculates various statistics for grouped data.

Formula: \( \text{Variance} = \frac{\sum f (x - \bar{x})^2}{\sum f} \)

Example: \( \text{Variance} = \frac{(2 \cdot (10 - 20)^2) + (3 \cdot (20 - 20)^2) + (5 \cdot (30 - 20)^2)}{2 + 3 + 5} \)