The formula to calculate the dipole energy (U) is:
\[ U = p \cdot E \cdot \cos(\theta) \]
Where:
Let's say the dipole moment (p) is 2 C·m, the electric field strength (E) is 5 N/C, and the angle (θ) is 30 degrees. Using the formula:
\[ U = 2 \cdot 5 \cdot \cos(30^\circ) \]
We get:
\[ U = 2 \cdot 5 \cdot \frac{\sqrt{3}}{2} = 5\sqrt{3} \, \text{J} \]
So, the dipole energy is approximately 8.66 J.
Formula: \( E = \frac{1}{4 \pi \epsilon_0} \frac{p}{r^3} \)
Example: \( E = \frac{1}{4 \pi \times 8.85 \times 10^{-12}} \frac{2 \times 10^{-30}}{0.1^3} \)
Formula: \( U = -p \cdot E \)
Example: \( U = -2 \times 10^{-30} \cdot 1 \times 10^{5} \)
Formula: \( p = q \cdot d \)
Example: \( p = 1.6 \times 10^{-19} \cdot 0.5 \)
Formula: \( d = \frac{p}{q} \)
Example: \( d = \frac{2 \times 10^{-30}}{1.6 \times 10^{-19}} \)
Formula: \( F = \frac{1}{4 \pi \epsilon_0} \frac{p_1 p_2}{r^4} \)
Example: \( F = \frac{1}{4 \pi \times 8.85 \times 10^{-12}} \frac{2 \times 10^{-30} \times 3 \times 10^{-30}}{0.2^4} \)
Formula: \( U = -p \cdot E \)
Example: \( U = -3 \times 10^{-30} \cdot 2 \times 10^{5} \)
Formula: \( p = q \cdot d \)
Example: \( p = 1.6 \times 10^{-19} \cdot 0.4 \)
Formula: \( L = \frac{\lambda}{2} \)
Example: \( L = \frac{3 \times 10^8 / 100 \times 10^6}{2} \)