Circular Velocity Calculator
Definition
- Circular Velocity (Vc): The total angular speed of a rotating object relative to the circle’s radius.
- Tangential Velocity (Vt): The linear speed of an object moving along the edge of a circle.
- Radius (R): The distance from the center of the circle to its edge.
Example
Let's say the tangential velocity (Vt) is 10 m/s, and the radius (R) is 2 meters. Using the formula:
\[
Vc = \frac{10}{2} = 5 \, \text{rad/s}
\]
So, the circular velocity is 5 rad/s.
Extended information about "Circular-Velocity-Calculator"
How to Find Circular Velocity
Definition: Calculate the velocity of an object in circular motion.
Formula: \( v = \frac{2\pi r}{T} \)
- \( v \): Circular velocity
- \( r \): Radius of the circle
- \( T \): Period of one complete revolution
- \( \pi \): Pi (approximately 3.14159)
Example: \( v = \frac{2\pi \times 5}{10} \)
- \( r \): 5 meters
- \( T \): 10 seconds
Circular Motion Velocity Formula
Definition: Calculate the velocity of an object in circular motion.
Formula: \( v = \omega r \)
- \( v \): Circular velocity
- \( \omega \): Angular velocity
- \( r \): Radius of the circle
Example: \( v = 2 \times 3 \)
- \( \omega \): 2 radians/second
- \( r \): 3 meters
Circular Orbit Velocity Formula
Definition: Calculate the velocity of an object in a circular orbit.
Formula: \( v = \sqrt{\frac{GM}{r}} \)
- \( v \): Orbital velocity
- \( G \): Gravitational constant (6.67430 × 10^-11 m³/kg/s²)
- \( M \): Mass of the central object
- \( r \): Radius of the orbit
Example: \( v = \sqrt{\frac{6.67430 \times 10^{-11} \times 5.972 \times 10^{24}}{6.371 \times 10^6}} \)
- \( G \): 6.67430 × 10^-11 m³/kg/s²
- \( M \): 5.972 × 10^24 kg
- \( r \): 6.371 × 10^6 meters
Average Velocity Formula for Circular Motion
Definition: Calculate the average velocity of an object in circular motion.
Formula: \( v_{avg} = \frac{2\pi r}{T} \)
- \( v_{avg} \): Average velocity
- \( r \): Radius of the circle
- \( T \): Period of one complete revolution
- \( \pi \): Pi (approximately 3.14159)
Example: \( v_{avg} = \frac{2\pi \times 4}{8} \)
- \( r \): 4 meters
- \( T \): 8 seconds
7Search Calculator© - All Rights Reserved 2025